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Abstract

Developers and users of high-performance distrib-
uted systems often observe performance problems such as
unexpectedly low throughput or high latency. Determining
the source of the performance problems requires detailed
end-to-end instrumentation of all components, including
the applications, operating systems, hosts, and networks.
However, one must be very careful to design the instru-
mentation to have extremely low overhead, and not affect
the system being monitored. In this paper we present a
very light-weight instrumentation system that can be
dynamically activated to unobtrusively collect and aggre-
gate detailed end-to-end monitoring information from dis-
tributed applications. We also show how emerging “Web
Services” can be used to facilitate remote interaction with
this system. 

1.0  Introduction
Developers and users of high-performance distributed

systems often see unexpected performance problems. It
can be difficult to track down the cause of these
performance problems because distributed system
components interact in complex ways. Bottlenecks can
occur in any of the components through which the data
flows: the applications, the operating systems, the device
drivers, the network interfaces, and/or in network
hardware such as switches and routers. 

In previous work we have shown that detailed
application monitoring is vital for both performance
analysis and application debugging [34][4][33]. In general
we have found that performance analysis of distributed
systems requires monitoring events before and after every
I/O operation. This can generate huge amounts of
monitoring data, and great care must be taken to deal with
this data in an efficient and unobtrusive manner. In large

cross-domain systems such as computational or data
Grids, fine-grained mechanisms for dynamic control of the
monitoring are also essential.

Consider the use-case of monitoring some of the High
Energy Physics (HEP) Grid projects [25][3][12] in a Data
Grid environment. These projects, which will handle
hundreds of terabytes of data, require detailed
instrumentation data to understand and optimize their data
transfers. For example, the user of a Grid File Replication
service [5][38] notices that generating new replicas is
taking much longer than it did last week. The user has no
idea why performance has changed. Is there a problem in
the network, disk, end host, GridFTP server, GridFTP
client, or some other Grid middleware such as the
authentication or authorization system? Monitoring
information is needed to pinpoint the bottleneck, and
determine what changed to cause this bottleneck. Current
performance must be analyzed, and compared against a
baseline drawn from previously archived information.
This performance analysis requires monitoring data for
hosts (CPU, memory, disk), networks (bandwidth, latency,
route), and the FTP client and server programs. 

In the example above, the amount of monitoring data
generated from a well-connected large FTP server could
be considerable. Consider the case of an FTP server with a
fast RAID disk array that is connected to a
Gigabit-Ethernet network. The server is instrumented to
log the start and end times for all network and disk read
and writes, which are in blocks of 64 KBytes. If the server
has 10 simultaneous clients, each transferring data at 10
MBytes per second, this will generate roughly 6250 events
per second of monitoring data. Assuming each monitoring
event is 50 Bytes, this equates to 313 KBytes/second, or
1.1 GBytes per hour, of monitoring data. Clearly, the
instrumentation data needs to be very compact and
efficient in order to generate and store this much
monitoring data without perturbing the system.

In this paper we describe a new, very efficient, binary
event format for NetLogger [34], our distributed
application instrumentation toolkit. We also describe how
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NetLogger instrumentation can be generated only when
needed, incurring negligible overhead when unused. Then
we look forward to the next logical step of interfacing this
functionality with other Grid components by exposing it as
a Grid “Web Service” [17].

2.0  Related Work
There are a number of systems that address

application monitoring. log4j, part of the Apache Project
[21], has produced a flexible library for Java application
logging. However, the performance of log4j is far lower
than is necessary for detailed monitoring, as is shown
below in the results section. Another tool is Autopilot
[26], which uses the flexible “self-describing data format”
(SDDF), but also has some performance limitations. 

There are several Grid event monitoring publication
systems currently under development which are based on
the Global Grid Forum’s [19] “Grid Monitoring
Architecture (GMA)” [32]. These include NWS [37],
R-GMA [13], Code [27], and the Globus project’s [14]
Metacomputing Directory Service (MDS) [8]. However
none of these systems are designed to handle streams of
thousands of events per second in a non intrusive manner.

Other related work includes general purpose event
handling systems, such as the CORBA event service [7],
the JINI distributed event service [20], and the ECHO
Event Service [11]. Of all of these, only ECHO is
specifically concerned with performance. Our message
format is similar in size and efficiency to PBIO [10],
which is used in the ECHO system, but is simpler and
more dynamic.

In addition, there are several groups exploring the use
of Web Services for various types of event handling in a
Grid environment, one of the first of which was Dennis
Gannon’s Group at the University of Indiana [29]. They
are now developing a more general-purpose messaging

system, called XEVENTS [39], which uses XML/SOAP
messages. The performance of their system is limited by
its use of XML messaging.

3.0  Monitoring Components
The system described in this paper has four main

monitoring components: the application instrumentation,
which produces the monitoring data; the monitoring
activation service, which triggers instrumentation, collects
the events, and sends them to the requested destinations;
the monitoring event receiver, which consumes the
monitoring data; and the archive feeder, which converts
events to SQL records and loads them into an event
archive. These components are illustrated in Figure 1. In
this paper, we focus on the first two components.

In order for a monitoring system to have high
end-to-end performance, none of the components can
cause the pipeline to “block” while processing the data, as
this could cause the application to block while trying to
send the monitoring to the next component. Depending on
the execution environment, potential bottlenecks exist on
the network from the producer to consumer, and inserting
events into the event archive database. To avoid blocking,
the system must impedance-match slow data “sinks” with
fast data “sources” by buffering data to disk at all
bottleneck locations, as shown in Figure 1. This is similar
to the approach taken by the Kangaroo system for copying
data files [31]. 

Of course, if the sustained data rate exceeds the
maximum speed of the slowest component the disk buffers
will eventually fill and the pipeline will block. However,
in many application debugging and tuning scenarios, high
monitoring data rates come in bursts, for example for the
duration of a file transfer or the run of a single set of
parameters, between which there is only low-frequency
“background” monitoring such as CPU or network probes.
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In this environment, the slower components will not block
the pipeline, but only add some latency as the data waits in
a buffer for processing. 

4.0  NetLogger Toolkit
At Lawrence Berkeley National Lab we have

developed the NetLogger Toolkit [34], which is designed
to monitor, under actual operating conditions, the behavior
of all the elements of the application-to-application
communication path in order to determine exactly where
time is spent within a complex system. Using NetLogger,
distributed application components are modified to
produce timestamped logs of “interesting” events at all the
critical points of the distributed system. Events from each
component are correlated, which allows one to
characterize the performance of all aspects of the system
and network in detail.

The NetLogger Toolkit itself consists of four
components: an API and library of functions to simplify
the generation of application-level event logs, a set of
tools for collecting and sorting log files, an event archive
system, and a tool for visualization and analysis of the log
files. In order to instrument an application to produce
event logs, the application developer inserts calls to the
NetLogger API at all the critical points in the code, then
links the application with the NetLogger library. All the
tools in the NetLogger Toolkit share a common log
format, and assume the existence of accurate and
synchronized system clocks. We have found that for this
type of distributed systems analysis, clock synchronization
of 1 millisecond is required, and that the NTP [24] tools
that ship with most Unix systems (e.g.: ntpd) can easily
provide this level of synchronization. 

We have found exploratory, visual analysis of the log
event data to be the most useful means of determining the
causes of performance anomalies. The NetLogger
Visualization tool, nlv, has been developed to provide a
flexible and interactive graphical representation of
system-level and application-level events. 

Figure 2 shows sample nlv results, using a remote data
copy application. The events being monitored are shown
on the Y axis, and time is on the X axis. CPU and TCP
CPU and TCP retransmit events are logged along with
application events. Each lifeline represents one block of
data, and one can easily see that occasionally a large
amount of time is spent between Server_Send_Start and
Client_Read_Start, which is the network data transfer
time. From this plot it is easy to see that these delays are
due to TCP retransmission errors on the network.

NetLogger’s ability to correlate detailed application
instrumentation data with host and network monitoring
data has proven to be a very useful tuning and debugging
technique for distributed application developers.

4.1  NetLogger Binary Log Format
Previous versions of NetLogger used the

IETF-proposed ULM format [1], a simple ASCII format
based on name/value pairs. While easy to read and parse,
this format imposed a great deal of unnecessary overhead.
In order to improve efficiency, we have developed a new
binary format that can still be used through the same API
but that is several times faster and smaller, with
performance comparable or better than binary message
formats such as MPI [23], XDR [28], SDDF-Binary [26],
and PBIO [10]. Our new NetLogger binary format is both
highly efficient and inherently self-describing, thus, unlike
the other formats, optimized for the dynamic message
construction and parsing of application instrumentation.

The NetLogger binary message format is able to
improve efficiency and simplify its design by restricting
its expressiveness in a way appropriate to the monitoring
domain. In the area of instrumentation and monitoring, the
vast majority of communication can be naturally modeled
with small time-stamped sets of name/value pairs. A few
simple types -- floating-point numbers, integers, and
strings -- account for almost all data values. For example,
logging a transfer of a block of data would require a
timestamp, host name, integer disk offset, and integer
number of bytes. The NetLogger binary format restricts
each message to contain less than 64KBytes, which
reduces the need for dynamic memory allocation on both
the sender and receiver. Only five simple types are
allowed, thus simplifying the marshaling code: 32 and
64-bit integers, 32 and 64-bit floating point numbers, and
strings.

In order to port the internal data representation across
different architectures, NetLogger uses a methodology
called “receiver-makes-right”, in which the sender uses its
native representation and the receiver converts if
necessary. When both machines use the same internal
representation, no conversion is necessary on either end,
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but when conversion is necessary, the burden is always
placed on the receiver. This is particularly appropriate for
monitoring or application instrumentation, because
minimizing perturbation at the sender, which is running
the actual application code, is far more important than
doing so at the receiver, which can even be a dedicated
machine if necessary.

Monitoring data must be self-describing, so that it can
easily be stored or processed by consumers of the
monitoring data. The NetLogger binary format associates
a descriptive “header” message with each type of “body”
message. In the header, which is sent once per message
type (per stream), are the name and data type of each data
value in the message, and static values such as the
program name or maximum data block size. Sending the
constant fields only once means that the NetLogger binary
format, unlike ULM or a generic binary encoding, does
not incur a performance penalty for static descriptive
fields in messages.

Finally, the importance of I/O buffering for
high-volume logging is often overlooked. With relatively
small messages, buffering can reduce the number of I/O
calls by a factor of 103. Buffering increases
communication latency, but even for “real-time”
monitoring added latencies of a second or two are
generally acceptable. The NetLogger library, by default,
employs 128KB buffers that automatically flush when full
or when one second has passed, thus limiting latency but
minimizing the load on the system at high data rates.

4.2  NetLogger Message Generation Results
We gathered performance results for the binary

message format in both C and Java. In both languages, we
compared the binary format to NetLogger’s ASCII ULM
and XML formats. In C, we also ran the same test with
Pablo’s binary SDDF format and with PBIO. In Java we
recreated the ULM log format with log4j, since log4j is a
common solution for instrumentation of Java applications.

For each test we generated and logged timestamped
events with the following information:

Timestamp=(microseconds); Host name=“foo.lbl.gov”; 
Program name=“MY_PROGRAM”; Event 
name=“MY_EVENT”

Variables: “MY_INT”=(32-bit integer value); 
“MY_FLOAT”=(32-bit floating point value)

The timestamp and two variables change with every
event, and the other fields are constant. Each test run
generated 100,000 timestamped events (timestamps are
obtained using the gettimeofday() system call for
NetLogger and currentTimeMillis() for log4j). The
average of five test runs was taken as the final result. For
the Java testing, we preceded each set of five runs with a

“warm-up” run to allow the Java Virtual Machine to
optimize the bytecode. The test platform was an unloaded
750 MHz PIII host running Linux 2.4.16 and the Sun Java
JVM version 1.3.1, logging to the Unix /dev/null to avoid
disk I/O issues. Results are shown in Table 1. For both C
and Java, the highest throughput is clearly from binary
NetLogger. 

Note that, unlike NetLogger, log4j does not
automatically timestamp and format the log entries. Our
log4j test program spends a large portion of its time
formatting the data string and building the output message.
However, we feel that this reflects the normal usage
pattern for log4j, and it is worth noting that our results are
very close to those found on the log4j web pages [22],
which used similar messages and an 800MHz PIII
machine.

For the PBIO tests, we did not send the event name,
program name, or host name with each message, as these
remain constant for a given event type. We did generate
and send a timestamp along with the int and float values.
Although we did not do a full analysis, the fact that binary
NetLogger is faster than PBIO is likely due to
NetLogger’s use of buffering.

The XML tests used the same low-level NetLogger
library as the ULM tests, so the performance difference is
entirely due to the increased verbosity of XML itself.

In summary; by borrowing ideas from systems such
as SDDF and PBIO, and restricting their use to monitoring
events with only five supported types, binary NetLogger is
an extremely fast and unobtrusive solution for
instrumenting applications.

5.0  Monitoring Activation
The Monitoring Activation Service is used to start and

stop application-level monitoring in a NetLogger-
instrumented application. Applications must use the

Table 1 Maximum speed results

Language Test Events/sec

C NetLogger (binary) 615,000

C PBIO (binary) 415,000

C NetLogger (ascii) 175,000

C SDDF (binary) 153,000

C NetLogger (xml) 150,000

Java NetLogger (binary) 122,000

Java NetLogger (ascii) 97,000

Java NetLogger (xml) 81,000

Java log4j (ascii) 26,000
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NetLogger trigger API, a new addition to the NetLogger
toolkit that uses an external file-based mechanism similar
to the configuration files used by log4j. The trigger API
allows long-running processes such as servers to change
their logging behavior without command-line arguments,
restarting, special signal handlers, or specialized control
messages.

The method for implementing the trigger is a quite
simple. At user-specified intervals (1 second by default),
as part of a logging call, NetLogger will check the trigger
file. If the file has changed, NetLogger will parse the file
and determine if and where data written to this handle
should be logged.

The components of the monitoring activation service
are shown in Figure 3. This service waits for requests to
send the data to some consumer (1), then creates a trigger
file entry for a given event type (2). NetLogger calls in the
application automatically check the trigger (3), and start
sending NetLogger output to the activation service (4).
The activation service reads the output and buffers it to
disk (5). In parallel, it reads data from the disk buffer (6),
and sends it to the consumer specified in the original
request (7).

The activation service provides the ability to apply a
client-specified filter to the monitoring data stream before
buffering and forwarding. Initially, we have allowed
clients to specify an event name, event name prefix, or
simply all events. Next, we plan to allow the client to
indicate interest in events with values above or below a
threshold.

Performance Results
Standard binary NetLogger can generate 615,000

events per second. Binary NetLogger that is watching for
trigger file updates can generate 583,000 events per
second, or 5% less than when triggering is off. When the
trigger file is modified it must be re-parsed. It takes 
to parse a large trigger file with 50 entries, which is quite
tolerable at low update rates. The activation service’s
filtering introduces minimal overhead, roughly  per
event.

6.0  Use of Web Services
Web Services are an emerging set of standards for

distributed internet computing, which build on
XML-based protocols including SOAP [30] for transport,
WSDL [6] for interface definition, and UDDI [36] for
discovery, to create a framework that is independent of a
particular language or programming model.

Web Services are fairly new, but the idea already has
a great deal of momentum. The commercial and scientific
computing communities as well as large companies --
including Microsoft, IBM, and Sun -- have committed to
using Web Services. Many people in the W3C and other
standards bodies are creating Web Service protocols. Soon
we will see releases of open-source and commercial Web
Service toolkits that can speed development of Grid
services and distributed scientific applications.

We plan to deploy the Monitoring Activation Service
as a Web Service. It will support the “producer” interface
of the Grid Monitoring Architecture (GMA). Thus,
consumers of monitoring data will be able use the same
basic interface to get NetLogger application monitoring

Figure 3: Client Request to the Monitoring Activation Service
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data that they use to access other GMA systems such as
the Globus MDS or the NWS. Also, the Monitoring
Activation Web Service can use existing Web Services
security work, such as SOAP over the Grid Security
Infrastructure (GSI) [15], to authenticate requests for
monitoring data.

The Grid Security Infrastructure is based on the
Transport Layer Security (TLS) [9] protocol and X.509
Proxy Certificates [35]. TLS provides authentication and
message integrity/confidentiality. GSI adds to TLS the
ability to remotely delegate X.509 Proxy credentials. 

Delegation is the main reason that the Activation
Service needs to use GSI instead of the more common
Secure Socket Layer (SSL) technology. The Activation
Service will use the delegated credentials to activate
monitoring on behalf of the requestor and to authenticate
to third parties, such as an archive, that might receive the
monitoring data.

By using standard commercial Web Service
protocols, the Activation Service will be able to
interoperate with commercial and Grid-based clients and
services. For example, it will interoperate with services
that use the Open Grid Services Architecture (OGSA)
[16], another Web-services based architecture proposed by
Argonne National Lab and IBM.

7.0  Case Study: GridFTP Server
The performance results given above for each

component suggest that the entire system should be
capable of handling the scenario given in Section 1. To
test this assumption, we performed the following
experiment.

For this experiment, we use the Globus GridFTP
server [2], which has been instrumented using NetLogger
to generate monitoring events before and after all I/O
inside of the Globus I/O library [18]. A GridFTP server is
installed on an 8 CPU Sun Solaris system (e4500), which
is connected to a Gigabit Ethernet LAN. We did not have
access to a fast enough RAID disk, so we are reading 200
MB files from /tmp, which on Solaris part of the virtual
memory system, and has a read performance of 110
MB/sec. 

The GridFTP server host used for this experiment is
different from the Linux machine used to measure binary
NetLogger throughput in Section4.2. Table 2 shows the
NetLogger performance on this host, using the same
messages as for the previous results.  Because each thread
uses a different CPU, the results correspond to the
maximum speeds for 1, 5, and 8 or more simultaneous
clients. 

We first verified that the use of the NetLogger
Activation Trigger did not add any significant overhead to
the FTP server. We added NetLogger instrumentation to
the server, and configured NetLogger to check for a
trigger file once every second, but never added an entry to
the trigger file. The results, shown in Table 3, show that
adding NetLogger to GridFTP, but not activating it, adds
only about 5% overhead, and had no effect on server
throughput.

We then continuously ran tests with 1, 5, and 20
clients, each on a different hosts, all connected by Fast
Ethernet or better networks to the server. We found that 20
clients could fully saturate the network link, but because
the server was network-bound instead of CPU-bound, less
than half of the available CPU cycles were used during the
tests.

Table 2 : NetLogger performance on the 
GridFTP server host

Test Events/sec

C binary (1 thread) 384,000

C binary (5 threads) 1,520,000

C binary (8 threads) 2,440,000

Table 3 : GridFTP server results 

CPU time per transfer (seconds)

Test mean dev delta

1 client 4.2 4%

1 client (un-activated Net-
Logger)

4.4 4% 5%

1 client (NetLogger) 4.5 4% 7%

5 clients 5.5 5%

5 clients (NetLogger) 5.8 5% 5%

20 clients 6.3 23%

20 clients (NetLogger) 6.7 20% 6%

Aggregate throughput (Mb/s)

Test mean dev delta

1 client 73 1%

1 client (un-activated Net-
Logger)

73 <1% <1%

1 client (NetLogger) 72 1% 1%

5 clients 361 1%

5 clients (NetLogger) 363 1% <1%

20 clients 441 4%

20 clients (NetLogger) 409 5% 7%
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The average event was 22 bytes. For 20 clients, the
throughput of 409 Mbits/s generated an aggregate of
roughly 3270 events per second. For one or five clients,
the per-client event rate was roughly 580 events per
second. For the NetLogger-instrumented runs, the trigger
file was checked at 1 second intervals.

We calculated the CPU time per client by taking the
sum of the ‘user’ and ‘sys’ time reported by the UNIX
‘time’ command for each execution of the FTP server,
which gets started via inetd for each new client
connection.

Results for these tests are shown in Table3. In this
table, the “mean” is, for the CPU time, the 10% trimmed
mean of CPU times for all clients, and the throughput is
the sum of the 10% trimmed mean of each client’s
throughput. The “dev” is the percent deviation from the
(non-trimmed) mean, and the “delta” is the percentage of
increased CPU time or decreased throughput for
NetLogger-instrumented runs as compared to
non-NetLogger runs.

This table shows that adding NetLogger
instrumentation with the trigger API has a small effect on
CPU time and, except for the case of 20 clients, an even
smaller effect on throughput. However, the increase in
CPU time for all runs, and the decrease in throughput for
the 20 client run, were higher than expected. We do not
yet know the reason for this disparity.

Some of the additional overhead comes from the extra
copy of the monitoring data which is buffered on local
disk (‘/tmp’ in this case), and the separate process that
copies it across the network to the final receiver.
Triggering also accounts for a small increase in overhead,
although we experimented with changing the trigger
interval from 1 second to 5 seconds without an appreciable
change in CPU overhead or throughput.

We believe that the results are on the whole
encouraging. For a moderately loaded server with
360Mbits/s continuous throughput, NetLogger lowered
throughput by less than one percent, and even when the
network interface card was completely saturated, adding a
binary NetLogger stream didn’t increase per-client CPU
time by more than 7 percent. Since most FTP servers are
I/O limited, this small increase in CPU is negligible. 

8.0  Conclusions
We have discussed the importance of detailed

end-to-end monitoring data to analyze high-performance
distributed applications such as GridFTP. We have also
shown that, although a very high volume of monitoring
information is generated by this process, NetLogger and
the Monitoring Activation Service can dynamically
provide real-time access to this information with minimal
system perturbation.
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